Search results for "Monocarboxylate transporter"
showing 8 items of 8 documents
Protein profiles in human ovarian cancer cell lines correspond to their metabolic activity and to metabolic profiles of respective tumor xenografts
2012
Many solid tumors show a large variability in glycolytic activity and lactate accumulation, which has been correlated with different metastatic spread, radioresistance and patient survival. To investigate potential differences in protein profiles underlying these metabolic variances, the highly glycolytic human ovarian cancer cell line OC316 was investigated and compared with the less glycolytic line IGROV-1. Extracellular acidification and oxygen consumption were analyzed with an extracellular flux analyzer. Glycolysis-associated proteins, including specific membrane transporters, were quantified through in-cell western analyses. Metabolic properties of corresponding tumor xenografts were …
2019
Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatm…
Elevated serum triiodothyronine and intellectual and motor disability with paroxysmal dyskinesia caused by a monocarboxylate transporter 8 gene mutat…
2008
Monocarboxylate transporter 8 (MCT8 or SLC16A2) is important for the neuronal uptake of triiodothyronine (T3) in its function as a specific and active transporter of thyroid hormones across the cell membrane, thus being essential for human brain development. We report on a German male with Allan-Herndon-Dudley syndrome presenting with severe intellectual and motor disability, paroxysmal dyskinesia combined with truncal muscular hypotonia, and peripheral muscular hypertonia at his current age of 9 years. Additionally, the patient has a lesion in the left putamen region revealed by magnetic resonance imaging and elevated serum T3 levels. The male appeared to have a hemizygous mutation (R271H)…
Evidence for hypothalamic ketone bodies sensing: impact on food intake and peripheral metabolic responses in mice
2016
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain keton…
Impact of exogenous lactate on survival and radioresponse of carcinoma cells in vitro
2009
Tumour lactate levels have been shown to correlate with high radioresistance in tumour models in vivo. The study aimed to evaluate the impact of pathophysiological extracellular lactate concentrations and acidosis on the in vitro survival and radioresponse of various cancer cell lines.HCT-116, HT29 (colorectal) and FaDu (HNSCC) carcinoma cells were studied. Lactate release rates were determined, and expression of the monocarboxylate transporter MCT1 and its cofactor CD147 were monitored by immunofluorescence and flow cytometry. Colony formation was compared for cells exposed to 20 mM exogenous lactate, acidosis (pH 6.4) and lactate plus acidosis relative to control and dose response curves …
Astrocytes and hypothalamic glucose sensing: metabolic role and involvement of astroglial connexins
2012
The hypothalamus plays a pivotal role in the nervous control of glucose homeostasis. This area contains gluco-sensitive neurons. Some of them detect increases in glucose levels and regulate glucose homeostasis by stimulating insulin secretion or inhibiting food intake. It is widely accepted that astrocytes are metabolically coupled to neurons. Lactate, resulting from the metabolism of glucose by astrocytes, is transported via the monocarboxylate transporters (MCTs). In addition, gap junctions (GJ), that form networks within astrocytes, are essential to transfer glucose from the bloodstream to the active neurons. These astroglial GJ mainly consist of connexins 43 and 30 (Cxs).The aims of my …
Association of Monocarboxylate Transporter-1 (MCT1) A1470T Polymorphism (rs1049434) with Forward Football Player Status.
2018
AbstractThe aim of this study was to investigate the association between the MCT1 (monocarboxylate transporter 1) A1470T polymorphism and positional roles in a large cohort of professional football players from five different countries. We compared genotype distributions of the MCT1 A1470T polymorphism between football players (n=694) and non-athlete controls (n=781) from Italy, Poland, Lithuania, Ukraine and Malta, and we analyzed the MCT1 genotype distributions with respect to the players’ positions in the field (e. g. forwards, midfielders, defenders and goalkeepers). Genomic DNA was extracted from either buccal epithelium or peripheral blood using a standard protocol. In the pooled coho…
Inhibition of tumor lactate oxidation: consequences for the tumor microenvironment.
2011
Abstract Background and purpose Tumor cells are recognized as being highly glycolytic. However, recently it was suggested that lactate produced in hypoxic tumor areas may be taken up by the monocarboxylate transporter MCT1 and oxidized in well-oxygenated tumor parts. Furthermore, it was shown that inhibition of lactate oxidation using the MCT1 inhibitor α-cyano-hydroxycinnamate (CHC) can radio-sensitize tumors possibly by forcing a switch from lactate oxidization to glycolysis in oxygenated cells, which in turn improves tumor oxygenation and indirectly kills radio-resistant hypoxic tumor cells from glucose starvation. Material and methods To provide direct evidence for the existence of a ta…